任何人均可以轻易生成大量的私钥、公钥、地址。地址本身是匿名的,通过多个地址交易可进一步提高匿名性。但该匿名性并不像媒体宣传的那样,是某种程度上的匿名。因为比特币的交易数据是公开的,所以任何一笔资金的流向均是可以追踪的。不了解比特币的人为它的匿名性产生一些担忧,比如担心更利于从事非法业务;了解比特币的人却因为它的伪匿名性而苦恼。传统货币在消费中也是匿名的,且是法律保障的,大部分国家都不允许个人涂画纸币。地址本身是匿名的,但你可以通过地址对应的私钥签名消息来向公众证明你拥有某个比特币地址。
传统货币存在多重支付(Double Spending)问题,典型的比如非数字时代的支票诈骗、数字时代的信用卡诈骗等。在比特币系统里,每笔交易的确认均需要得到全网广播,并收录进Block后才能得到真正确认。每笔钱的花销,均需要检测上次输入交易的状态。数据是带时间戳的、公开的,BlockChain由巨大的算力保障其安全性。所以比特币系统将货币的多重支付的风险极大降低,几近于零。通过等待多个Block确认,更是从概率上降低至零。一般得到6个确认后,可认为非常安全。但对于能影响你人生的重大支付,建议等待20~30个确认。
传统的造币厂模型为交易的参与者提供了一定程度的隐私保护,因为试图向可信任的第三方索取交易信息是严格受限的。但是如果将交易信息向全网进行广播,就意味着这样的方法失效了。但是隐私依然可以得到保护:将公钥保持为匿名。公众得知的信息仅仅是有某个人将一定数量的货币发所给了另外一个人,但是难以将该交易同特定的人联系在一起,也就是说,公众难以确信,这些人究竟是谁。这同股票交易所发布的信息是类似的,股票交易发生的时间、交易量是记录在案且可供查询的,但是交易双方的身份信息却不予透露。作为额外的预防措施,使用者可以让每次交易都生成一个新的地址,以确保这些交易不被追溯到一个共同的所有者。但是由于并行输入的存在,一定程度上的追溯还是不可避免的,因为并行输入表明这些货币都属于同一个所有者。此时的风险在于,如果某个人的某一个公钥被确认属于他,那么就可以追溯出此人的其它很多交易。
既然所有交易的输入源头都是来自CoinBase,产生CoinBase时即意味着货币发行。比特币采用衰减发行,每四年产量减半,第一个四年每个block的coinbase奖励50BTC,随后是25btc, 12.5btc, …并最终于2140年为零,此时总量达到极限为2100万个btc。减半周期,严格来说,并不是准确的四年,而是每生成210000个block。之所以俗称四年减半,是因为比特币系统会根据全网算力的大小自动调整难度系统,使得大约每两周产生2016个block,那么四年约21万块block。该函数GetBlockValue()用于计算挖得Block的奖励值:int64 static GetBlockValue(int nHeight, int64 nFees){int64 nSubsidy = 50 * COIN;// Subsidy is cut in half every 210000 blocks, which will occur approximately every 4 yearsnSubsidy >>= (nHeight / 210000);return...
虽然可以单个单个地对电子货币进行处理,但是对于每一枚电子货币单独发起一次交易将是一种笨拙的办法。为了使得价值易于组合与分割,交易被设计为可以纳入多个输入和输出。一般而言是某次价值较大的前次交易构成的单一输入,或者由某几个价值较小的前次交易共同构成的并行输入,但是输出最多只有两个:一个用于支付,另一个用于找零(如有)。需要指出的是,当一笔交易依赖于之前的多笔交易时,这些交易又各自依赖于多笔交易,但这并不存在任何问题。因为这个工作机制并不需要展开检验之前发生的所有交易历史。
比特币是密码货币、纯数字化货币,没有看得见摸得着的硬币或纸币。一个人持有比特币意味着:其拥有一些地址的私钥,这些地址是数笔交易的输出,且未花费。所有货币记录均以交易形式存储在整个blockchain数据块中,无交易无货币。货币不会凭空产生,也不会凭空消失。遗失了某个地址的私钥,意味着该地址上的Tx无法签署,无法成为下一个Tx的输入,便认为该笔比特币永久消失了。
在不运行完整网络节点的情况下,也能够对支付进行检验。一个用户需要保留最长的工作量证明链条的区块头的拷贝,它可以不断向网络发起询问,直到它确信自己拥有最长的链条,并能够通过merkle的分支通向它被加上时间戳并纳入区块的那次交易。节点想要自行检验该交易的有效性原本是不可能的,但通过追溯到链条的某个位置,它就能看到某个节点曾经接受过它,并且于其后追加的区块也进一步证明全网曾经接受了它。当此情形,只要诚实的节点控制了网络,检验机制就是可靠的。但是,当全网被一个计算力占优的攻击者攻击时,将变得较为脆弱。因为网络节点能够自行确认交易的有效性,只要攻击者能够持续地保持计算力优势,简化的机制会被攻击者焊接的(fabricated)交易欺骗。那么一个可行的策略就是,只要他们发现了一个无效的区块,就立刻发出警报,收到警报的用户将立刻开始下载被警告有问题的区块或交易的完整信息,以便对信息的不一致进行判定。对于日常会发生大量收付的商业机构,可能仍会希望运行他们自己的完整节点,以保持较大的独立完全性和检验的快速性。
如果最近的交易已经被纳入了足够多的区块之中,那么就可以丢弃该交易之前的数据,以回收硬盘空间。为了同时确保不损害区块的随机散列值,交易信息被随机散列时,被构建成一种Merkle树(Merkle tree)的形态,使得只有根(root)被纳入了区块的随机散列值。通过将该树(tree)的分支拔除(stubbing)的方法,老区块就能被压缩。而内部的随机散列值是不必保存的。不含交易信息的区块头(Block header)大小仅有80字节。如果我们设定区块生成的速率为每10分钟一个,那么每一年产生的数据位4.2MB。(80 bytes * 6 * 24 * 365 = 4.2MB)。2008年,PC系统通常的内存容量为2GB,按照摩尔定律的预言,即使将全部的区块头存储于内存之中都不是问题。
我们约定如此:每个区块的第一笔交易进行特殊化处理,该交易产生一枚由该区块创造者拥有的新的电子货币。这样就增加了节点支持该网络的激励,并在没有中央集权机构发行货币的情况下,提供了一种将电子货币分配到流通领域的一种方法。这种将一定数量新货币持续增添到货币系统中的方法,非常类似于耗费资源去挖掘金矿并将黄金注入到流通领域。此时,CPU的时间和电力消耗就是消耗的资源。另外一个激励的来源则是交易费(transaction fees)。如果某笔交易的输出值小于输入值,那么差额就是交易费,该交易费将被增加到该区块的激励中。只要既定数量的电子货币已经进入流通,那么激励机制就可以逐渐转换为完全依靠交易费,那么本货币系统就能够免于通货膨胀。激励系统也有助于鼓励节点保持诚实。如果有一个贪婪的攻击者能够调集比所有诚实节点加起来还要多的CPU计算力,那么他就面临一个选择:要么将其用于诚实工作产生新的电子货币,或者将其用于进行二次支付攻击。那么他就会发现,按照规则行事、诚实工作是更有利可图的。因为该等规则使得他能够拥有更多的电子货币,而不是破坏这个系统使得其自身财富的有效性受损。
多个Block连接起来成为数据链(Block Chain)。为了引入容错与竞争机制,比特币系统允许Block Chain出现分叉,但每个节点总是倾向于选择最高的、难度最大的链,并称之为Best Chain,节点只认可Best Chain上的数据。首个Block称为Genesis Block,并设定高度为零,后续每新增一个Block,高度则递增一。目前是不允许花费Genesis Block中的比特币的。每个Block中的Tx在此Block中均唯一,一个Tx通常只会在一个Block里,也可能会出现在多个Block中,但只会在Best Chain中的某一个Block出现一次。
- 1
- 2
- 3
- 4
- 5
- 6